LOK JAGRUTI UNIVERSITY (LJU)

INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Mechanical Engineering (710)

Bachelor of Engineering (B.E.) – Semester - V

ĪĒ

Course Code:	017103502
Course Name:	Machine Design 1
Category of Course:	Professional Core Course (PCC)
Prerequisite Course:	Mathematics 1 (017101191), Engineering Mechanics (017102291), Strength of Materials (017103391) Manufacturing Technology (017103401), Material Science and Metallurgy (017103404)

Teaching Scheme						
Lecture (L)	Tutorial (T)	Practical (P)	Credit	Total Hours		
4	1	2	6	50		

	Syllabus					
Uni t No.	Торіс	Prerequisite Topic	Successive Topic	Teach ing Hours		
	Design Against Fluctuating Loads					
	1.1 Stress concentration, Methods of Reducing Stress Concentration.	Stress (017103391-Unit- 01)				
01	1.2 Endurance limit and fatigue failure	Types of loads (017103391-Unit-01)		5 (10%)		
	1.3 Factors affecting endurance limit, Notch Sensitivity	Mechanical properties (017103404-Unit-01)				
	1.4 S-N Diagram, design for reversed stresses and cumulative damage in fatigue	Stress and strain (017103391-Unit-01)				
	Fluctuating Stresses					
02	2.1 Soderberg, Gerber, Goodman and modified-Goodman criteria	Tensile and compressive stress (017103391-Unit- 01)		4 (8%)		
	2.2 Combined stresses	Stress (017103391-Unit- 01)				
	Design of Springs					
	3.1 Classification of springs (Helical, Conical and Volute, torsion, Leaf, Disc, Special Type)			4		
03	3.2 Terms used in Compression Spring			(8%)		
	3.3 Helical spring: style of ends, stresses, correction factors, and deflection	Stress and strain (017103391-Unit-01)				
	3.4 Design against static and fluctuating loads	Shear stresses (017103391-Unit-06)				

		Shear force (017103391-	
	3.5 Concentric springs, surge phenomenon	Unit-04)	
	3.6 Helical torsion and spiral springs, shot peening of springs	Torsion (017103391-Unit- 09)	
	3.7 Terminology, nipping and Design of multi-leaf spring	Deflection (017103391- Unit-01)	
	Belt Drives		
	4.1 Introduction to Belt Drive, Selection of a Belt Drive, Types of Belt Drives (Light, medium and heavy), Types of Belts (Flat belt, V-belt and circular belt), Material used for Belts (Leather, cotton, Rubber and Balata belt)		
04	4.2 Types of Flat Belt Drives (Open belt drive, Crossed or twist belt drive, quarter turn belt drive, Belt drive with idler pulleys, Compound belt drive, Stepped or cone pulley drive, Fast and loose pulley drive) and Length of the belt: open and cross drive types	Trigonometry and geometry (017101191- Unit-02)	 6 (12%)
	4.3 Velocity Ratio of a Belt Drive, Slip of the Belt and Creep of Belt		
	4.4 Power Transmitted by a Belt and Ratio of tensions on tight side to slack side	Coplanar concurrent forces (017102291-Unit- 02)	
	4.5 Centrifugal Tension, Maximum Tension in the Belt and Condition for maximum power transmission		
	4.6 Initial Tension in the Belt		
	Governors		
	5.1 Necessity of governor, classification of governors (Centrifugal governors and Inertia governors)	Moments (017102291- Unit-03)	
	5.2 Working principle of centrifugal Governors and Terms Used in Governors	Centrifugal forces (017102291-Unit-02)	
05	5.3 Analysis of Governors (Watt, Porter, Proell, Hartnell and Pickering Governors)		 6 - (12%)
00	5.3 Concept of control force, control force diagram (for Porter and Spring Controlled Governors)		 (1270)
	5.4 Stability of governor, condition for stability		
	5.5 Concept of isochronism, sensitivity of governor		
	5.6 Characteristics of governors, hunting of governors		
	Friction Devices: Clutches		
06	6.1Intriduction and Types of clutches (Positive clutches and Friction clutches)	Friction (017102291- Unit-07)	 5 (10%)
	6.2 Material for Friction Surfaces, Types of Friction Clutches (Disc or plate clutches	Friction (017102291- Unit-07)	

	(single disc or multiple disc clutch, Cone		
	clutches, and Centrifugal clutches)		
	6.3 Design of a Disc or Plate Clutch by	Basic differentiation and	
	Considerations for uniform wear and	integration (017101191-	
	uniform pressure theory	Unit-03)	
	6.4 Design of Multi-plate clutch and	Friction (017102291-	 -
	Centrifugal Clutch	Unit-07)	
	Friction Devices: Brakes	0111-07)	
			-
	7.1Introduction and Energy Absorbed by a		
	Brake, Classification of brakes, Materials		
	for Brake Lining		5
07	7.2 Analysis of brakes: Single Block or Shoe Brake, Pivoted Block or Shoe	Friction (017102291-	 (10%)
07	Brake, Double Block or Shoe Brake	Unit-07)	(1070)
	7.3 Design of Simple Band Brake,		
	Differential Band Brake, Band and Block	Moments (017102291-	
	Brake, Internal Expansion Shoe Brake	Unit-03)	
	(Only Theory)	0111-03)	
	Dynamometers and Strain Gauges 8.1 Classification of dynamometers		
	v	Moments and couple	 -
	8.2 Prony brake and rope brake dynamometers	(017102291-Unit-03)	
		Belt drives (D-007-Unit-	
	8.3 Hydraulic, belt transmission dynamometers	05)	
	8.4 Epicyclic-Train and Bevis-Gibson	Torsion (017103391-Unit-	3
08	torsion dynamometers	09)	 (6%)
	8.5 Strain measuring instrument		
	(Measurement of strain: Mechanical strain		
	gauges, electrical strain gauges, strain		
	gauge: materials, gauge factors, theory of		
	strain gauges and method of measurement,		
	bridge arrangement, temperature		
	compensation.)		
	Threaded Joints		
	9.1 Introduction to Threaded joint,		 -
	Terminology of Screw Threads and Basic		
	types of screw fastening,		
	9.2 Cap and Set screw, Bolt of Uniform		 -
	strength		
	9.3 locking devices (Jam Nut, Castle Nut,		 1
	Split nut, Locking with Setscrew, Locking		
	with Spring Washer)		6
09		Stress and types of stress,	 (12%)
	9.4 Design of Bolted Joint: Simple and	Strain and types of strain	
	Eccentric loading (Eccentric Load Acting	(017103391-Unit-1.2)	
	Parallel to the Axis of Bolts and Eccentric	Moment of a force,	
	Load Acting Perpendicular to the Axis of	Principle of moments,	
	Bolts)	Couples, Equivalent	
	/	couples (017102291-Unit-	
l		3.1)	-
	9.5 Torque requirement for bolt tightening		
11	9.6 Design of turnbuckle		 -
	9.7 Screw thread measurement, Errors in		

	threads9.8 Screw thread gauges, measurement of element of the external and internal threads, thread caliper gauges		
	Welded Joints		
	10.1 Introduction of welded joints, Advantages and Disadvantages of welded Joints over Riveted Joints, stress relieving of welded joints	Welding processes (017103401-Unit-06)	
	10.2 Types of Welded Joint (Lap and Butt Joint)		 6
10	10.2 Strength of butt, Parallel and Transverse fillet joint		 (12%)
	10.3 Maximum Shear Stress in Parallel Fillet Weld and Maximum Shear Stress in Transverse Fillet Weld	Basic differentiation and integration (017101191- Unit-03)	
	10.4 Eccentric load in the plane of weld, welded joint subjected to bending and torsion	Torsion (017103391-Unit- 09)	

Proposed Theory + Practical Evaluation Scheme by Academicians (% Weightage Category Wise and it's Marks Distribution)						
L:	4	T:	1	P:	2	
Note: In Theory Group, Total 4 Test (T1+T2+T3+T4) will be conducted for each subject. Each Test will be of 25 Marks. Each Test Syllabus Weightage: Range should be 20% - 30%						
Group (Theory or Practical)	Group (Theory or Practical) Credit	Total Subject Credit	Category	% Weightage	Marks Weightage	
Theory			MCQ	25%	30	
Theory			Theory Descriptive	0%	00	
Theory	5		Formulas and Derivation	17%	20	
Theory			Numerical	42%	50	
Expected Theory %	84%	6	Calculated Theory %	84%	100	
Practical			Individual Project	10%	60	
Practical	1		Group Project	0%	0	
Practical			Internal Practical Evaluation (IPE)	0%	0	

Practical		Viva	6%	40
Practical		Seminar	0%	0
Expected Practical %	16%	Calculated Practical %	16%	100
Overall %	100%		100%	200

Cour	rse Outcomes
	Upon completion of the course students will be able to
1	Analyze variable stresses induced in components subjected to fluctuating loads and calculate stresses
	and deflection in design of springs.
2	Design different dimensions and parameters like speed & power transmitted in Belt Drives and
	Governors.
3	Evaluate power lost in friction and design parameters to design friction devices like Clutches, brakes
	and dynamometers.
4	Compute design calculations of components joined by Threaded and Welded joints based on design
	procedure.
Sugg	ested Reference Books
1	Design of Machine Elements by V B Bhandari, McGraw Hill.
2	Fundamentals of Machine Component Design by R C Juvinall, Wiley.
3	Machine Design: Fundamentals and Applications by P C Gope, PHI.
4	Machine Design an Introduction by R L Norton, Pearson.
5	Mechanics of Materials by E J Hearn, BH.
6	Theory of Machines by S S Rattan 4/e, McGraw-Hill.
7	Theory of Machines and Mechanisms by J. Uicker, Gordon R Penstock and J.E. Shigley, Oxford.
8	Mechanism and Machine Theory by A G Ambekar, PHI.
9	Machine Drawing by K C John, PHI.

List o	List of Open Source Software/Learning Website		
1	http://nptel.ac.in		
2	https://www.coursera.org		
3	https://www.edx.org		
4	https://in.linkedin.com		
5	https://www.skill-lync.com		

Real	Practical Problem/ Hands on Project	
Sr. No.	Real Practical Problem	Linked with Unit
1	Fatigue failure analysis of a helical compression spring for a heavy vehicle's suspension system.	Unit 01,02
2	How much force apply on spring for controlling the motion, as in brakes and clutch in automobile.	Unit 03
3	Design of leaf spring for bus.	Unit 04
4	Belt and drive analysis of flour mill.	Unit 05
5	In automobile, controlling the RPM of an engine by regulating the fuel supply.	Unit 06
6	Design of single-plate for four wheeler	Unit 07
7	Design of block brake for train	Unit 08
8	Measure torque and power of pelton wheel turbine using rope brake dynamometer.	Unit 09
9	Suggest the process for joining elbow in pipe.	Unit 10